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1 Variational Principles for the Entropy Rate

1.1 Recap

Last time, we showed that

s(µ) := inf
W,U3µ

lim
B↑Zd

1

|B|
log |{x ∈ AB : PWx ∈ U}|

=

{
h(µ) := limB

1
|B|H(µB) if µ ∈ P T

−∞ otherwise.

Here, we extend h by h(µ) = −∞ if µ /∈ P T . Then h : M(AZd
)→ [−∞, log |A|] is concave

and upper semicontinuous, and the set {h > −∞} = {h ≥ 0} = P T . The upper bound

log |A| is achieved when µ = Unif×Z
d

A .
Now, we will see two variational principles.

1.2 The first variational principle

Theorem 1.1. Let ψ : AZd → Rr depend only on coordinates in a finite W ⊆ Zd. For
x ∈ Rr, let

s(ψ, y) = inf
V 3x

lim
B↑Zd

1

|B|
log |{x ∈ AB : 1

|B|ΨB(x) ∈ V }|,

where the inf is over open, convex neighborhoods of x in Rr. Then

s(ψ, y) = sup{h(µ) : µ ∈ P T , 〈ψ, µ〉 = y}
= sup{h(µ) : µ ∈ P, 〈ψ, µ〉 = y}.

with the convention that sup∅ = −∞.
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Proof.

1

|B|
ΨB(x) =

1

|B|
∑

v+W⊆B
ψ(T vx)

=
1

|{v : v +W ⊆ B}|
∑

v+W⊆B
ψ(T vx) + o(|B|)

= 〈ψ, PWx 〉+ o(|B|),

This gives (≥): For any V ⊆ Rr and finite W ⊆ Zd, we have

1

|B|
log |{x ∈ AB : 〈ψ, PWx 〉 ∈ V }|.

The condition 〈ψ, PWx 〉 ∈ V defines any convex neighborhood of any µ such that 〈ψ, µ〉 = y.
So taking limB of the above, we get that it is ≥ h(µ) for any such µ.

Now consider (≤). Let

h = sup{h(µ) : µ ∈ P, 〈ψ, µ〉 = y}.

The set {µ ∈ P : 〈ψ, µ〉 = y} is compact, so there exists a window W and open convex sets
U1, . . . , Ur in P (AW ) such that {µ ∈ P : 〈ψ, µ〉 = y} ⊆

⋃
i{µ ∈ P : µW ∈ Ui} and

1

|B|
log |{x : PWx ∈ Ui}| ≤ (h+ ε) + o(1)

for all i. Finally, by compactness again, if V ⊆ Rr is a small enough neighborhood of y,
then ⋃

i

{µ ∈ P : µW ∈ Ui} ⊇ {µ : 〈ψ, µ〉 ∈ V }

So
1

|B|
log |{x : 〈ψ, PWx 〉 ∈ V }| ≤ max

i

1

|B|
log |{x : PWx ∈ Ui}|+

log s

|B|
≤ h+ ε

as B ↑ Zd. Since ε > 0 is arbitrary, we get s(ψ, y) = h, as desired.

Corollary 1.1. For any convex, open V ⊆ Rr,

s(ψ, V ) = lim
B

1

|B|
log |{x : 〈ψ, PWx 〉 ∈ V }|

= sup
y∈V

s(ψ, y)

= sup{h(µ) : µ ∈ P T , 〈ψ, µ〉 ∈ V }
= sup{h(µ) : µ ∈ P, 〈ψ, µ〉 ∈ V }.
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From this, we can return to interactions giving the total potential energy ϕ = (ϕF )F ,
assumed (for simplicity) to be a finite range interaction. Look at

|{x ∈ AB : 1
|B|Φ(x) ∈ I},

where I is a small open interval, and ΦB(x) =
∑

F⊆B ϕF (xF ) =
∑

F ′ |B|〈ϕF ′ , PWx 〉+o(|B|).
Here, W is a big enough window to see all nonzero translates, and F ′ runs over one copy
of each finite set ⊆W up to translation. So this set is∣∣∣∣∣

{
x ∈ AB :

∑
F ′

〈ϕF ′ , PWx 〉 ∈ I

}∣∣∣∣∣ .∑
F ′〈ϕF ′ , PWx 〉 ∈ I is an open, convex condition in Rr, so

1

|B|
log

∣∣∣∣∣
{
x ∈ AB :

∑
F ′

〈ϕF ′ , PWx 〉 ∈ I

}∣∣∣∣∣ B↑Zd

−−−→ sup

{
h(µ) : µ ∈ P T ,

∑
F ′

〈ϕF ′ , µ〉 ∈ I ≈ y

}
.

We can use this result to predict the most likely values of any other observable if there
is a unique measure µ that maximizes h(µ) subject to the constraint

∑
F ′〈ϕF ′ , µ〉 = y.

Remark 1.1. There always exists a µ achieving the supremum if the set {µ :
∑

F ′〈ϕF ′ , µ〉 =
y} 6= ∅ by upper semicontinuity of h on the above weak* compact set.

So the key question is when we get uniqueness of that maximizer. We will discuss this
next time.

1.3 A variational principle for the Fenchel-Legendre transform of h

To understand the second variational principle, we need to extend the first version from
ϕ : AZd → Rr to any ψ ∈ C(AZd

). To apply ψ “inside a box,” given x ∈ AB, let x̂ be any

element of AZd
such that x̂B = x. Given B and ψ ∈ C(AZd

), let

sBψ(x) =
∑
v∈B

ψ(T vx̂).

Lemma 1.1. If x̂, x̌ are two choices of extension, then∣∣∣∣∣∑
v∈B

ψ(T vx̂)−
∑
v∈B

ψ(T vx̌)

∣∣∣∣∣ = o(|B|).

Now a fiddly extension of the first variational principle gives

1

|B|
log |{x ∈ AB : 1

|B|sBψ(x) ∈ V }| = sup{h(µ) : µ ∈ P T , 〈ψ, µ〉 ∈ V }.
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This version is good because we can now handle the whole Banach space C(AZd
), which is

the dual of M(AZd
), equipped with the weak* topology. This leads to a description of the

Fenchel-Lengendre transform of h:

Theorem 1.2 (2nd variational principle). On C(AZd
),

h∗(f) := sup{h(µ)− 〈f, µ〉 : µ ∈M(AZd
)}

= lim
B↑Zd

1

|B|
log

∑
x∈AB

e−sBf(x).

The e−sBf(x) are the Gibbs weights that define the canonical distribution on AB. In
ergodic theory and much of mathematical physics, this limit is called the pressure of f
(denoted p(f)). Caution: this is not always the physical pressure of the system.
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